В 2021 году британские химики рассказали о получении соединения тория со связями между атомами металла. Авторы утверждали, что такой ториевый кластер — ароматический, хотя на классические органические ароматические молекулы вроде бензола он совсем не похож.
Михаил БОЙМ
Химическое сообщество довольно ревностно отнеслось к использованию одного из базовых понятий органической химии для кластеров металлов, поэтому через год вышла статья-опровержение, в которой ученые из Чехии и Польши доказывали, что ничего ароматического в этом ториевом кластере нет. Завязался спор, после которого каждая группа осталась при своем мнении, а статья осталась на месте.
История повторилась в 2023 году: в этот раз объектом спора разных групп ученых стал якобы ароматический висмутовый кластер. Теперь статья вышла в Nature Chemistry, а опровержение и ответ на него выложены в виде препринтов наСhemRxiv. Критики тоже указывают на то, что полученный кластер не соответствует современным критериям ароматичности.
Но что это за критерии? Спорщики описывают одно и то же соединение по-разному. И оттого неясно, что вообще такое ароматичность, и почему это свойство заслуживает дискуссий. Остался ли смысл в классическом термине, который сейчас пытаются использовать для новых классов химических соединений?
Источник аромата
История открытия ароматических соединений — это во многом история счастливых случайностей. Началась она с того, что в 1819 году изобретатели Дэвид Гордон и Эдвард Хёрд запатентовали способ удобного хранения горючего газа, который получался при пиролизе природной нефти. Их идея была в том, чтобы сжижать его при давлении в 30 атмосфер в небольшие медные контейнеры, а потом в нужный момент заполнять с помощью них газовые лампы для освещения улиц. Этот газ представлял собой смесь метана, угарного газа и других продуктов пиролиза, включая очень небольшую долю ароматических соединений, о которых Гордон и Хёрд ничего не знали.
В 1825 году Гордон поделился этим сжиженным газом с Майклом Фарадеем, который выделил из него новое вещество с резким запахом и большой массовой долей углерода. Оно кипело при 80 градусах Цельсия, а плавилось — при шести. Оно не реагировало с иодом, калием, едкими щелочами и серной кислотой. Реакция пошла только с хлором — и то лишь на свету. Такая избирательность для ненасыщенных углеводородов была удивительна.
То же самое вещество получил через девять лет после Фарадея немецкий химик Эйльхард Мичерлих, нагрев бензойную кислоту с гидроксидом кальция. Он назвал его Benzin — а мы сегодня именуем его бензолом.
К концу 1830-х годов химикам, помимо бензола, стали известны нитробензол, анилин, фенол и некоторые другие ароматические вещества — и сходство между всеми ними первыми заметили немецкий химик Август Вильгельм фон Гофман и его ученик Чарльз Мэнсфилд. Они выделили из каменноугольной смолы, помимо самого бензола, набор его производных: толуол, кумол, цимол, анилин и бензойную кислоту. Мэнсфилд в своей работе показал, что все эти вещества содержат один и тот же фрагмент из шести атомов углерода, к которому могут присоединяться разные группы атомов. А Гофман в 1857 году обнаружил этот же самый фрагмент у некоторых карбоновых кислот, и назвал их всех «ароматическими» — за присущий им резкий запах. Термин прижился, и так стали называть все известные производные бензола.
Ряд ароматических кислот, которые исследовал Гофман. В брутто-формулах удвоено количество атомов углерода и кислорода. Это связано с тем, что в формулах Гофман указывал не количество атомов, а количество эквивалентов соответствующего химического элемента в молекуле. Во времена Гофмана химики считали, что один атом водорода эквивалентен двум атомам кислорода или двум атомам углерода
August Wilhelm Von Hofmann / Proceedings of the Royal Society of London, 1857
Из-за большой массовой доли углерода эти производные напоминали обычные ненасыщенные углеводороды, в которых некоторые связи углерод-углерод одинарные, а некоторые — двойные. Но их химические свойства отличались от свойств всех прочих углеводородов: например, ненасыщенные соединения с двойными связями (алкены) легко вступают в реакции присоединения с галогенами и галогенводородными кислотами, а ароматические вещества никого присоединять не хотят — они вступают только в реакции замещения. Отличие в том, что в первом случае атомы галогена и водорода просто присоединяются к атомам углерода по двойной связи, превращая ее в одинарную. А в случае реакций замещения атом галогена может только заменить собой водород, оставив двойную связь нетронутой.
Но было непонятно, какая структура должна быть у молекулы, чтобы она так себя вела.
После десяти лет экспериментов стало ясно, что каждое ароматическое соединение имеет строго определенное число изомеров — веществ с тем же элементным составом, но разных по строению. И это число зависит от количества разных неуглеродных заместителей в молекуле. Например, у всех производных с одним заместителем был только один изомер, а если заместителя было два — то число изомеров увеличивалось до трех. Это явно говорило о симметрии молекул, и из этого немецкий химик Фридрих Август Кекуле в 1865 году вывел теорию строения ароматических соединений. В своей статье он утверждал, что все они содержат шестичленное углеродное кольцо, в котором три связи одинарные, а три — двойные. Теория успешно предсказывала уже найденные химиками изомеры ароматических веществ, но все еще не могла объяснить, почему эти вещества так отличаются по свойствам от обычных алкенов и алкинов. С этого момента ароматичность перестала иметь отношение к запаху вещества — она стала сообщать нечто о его строении.
Формулы разных ароматических соединений в изображении Кекуле. Небольшие круги на этих схемах — атомы водорода, а вытянутые фигуры — атомы углерода
August Kekulé / Bulletin mensuel de la Société Chimique de Paris, 1865
Делокализация электронной плотности
За следующие 60 лет объяснения химическим свойствам ароматических соединений так никто и не предложил, но появились точные данные о строении бензольного кольца. В 1929 году ирландская исследовательница Кэтлин Лонсдейл опубликовала расшифровку кристаллической структуры ароматического гексаметилбензола. Из ее данных следовало, что все связи углерод-углерод в цикле молекулы одинаковой длины, то есть в нем нет отдельных одинарных и двойных связей. Тогда, учитывая элементный состав молекулы, возникали противоречия с теорией строения органических соединений Кекуле.
Ортогональная проекция элементарной ячейки гексаметилбензола на одну из ее граней
Kathleen Lonsdale / Proceedings of the Royal Society of London, Series A, 1929
Объяснил симметрию молекулы бензола и равнозначность связей в нем Эрих Хюккель. Для этого пришлось дождаться появления квантовой физики, чтобы от нее двинуться в квантовую химию. В 1931-м году немецкий химик использовал для описания электронного строения бензола теорию молекулярных орбиталей, разработанную в конце 20-х годов.
Хюккель показал, что в бензоле нет обычных направленных и локализованных двойных связей, как предполагал Кекуле. А те электроны, которые должны эти двойные связи образовывать, распределены между всеми атомами углерода в кольце одновременно. Такая делокализация электронной плотности приводит к повышенной стабильности углеродного кольца, потому что располагаются делокализованные электроны на связывающих молекулярных орбиталях, удерживающих все атомы кольца вместе. При этом каждый нейтральный углерод отдает в кольцо по одному валентному электрону с p-орбитали (остальные уходят на образование классических одинарных связей с соседними атомами).
Молекулярные орбитали бензола. Заполнены только три связывающие орбитали, а разрыхляющие — пустые
Seymour Blinder / Chem.libretexts.org
По сути, Хюккель утверждал, что в бензоле нет чередующихся двойных и одинарных связей, а есть одинаково прочные связи одной длины и одного порядка — и они намного устойчивее, чем была бы «полуторная» связь, промежуточная между одинарной и двойной. Благодаря этому открытию стало понятно, почему бензол и его производные не похожи на обычные алкены, в которых есть точно локализованная двойная связь углерод-углерод, которая легко присоединяет к себе галогены.
Кроме того, из расчетов Хюккеля следовало правило: чтобы циклическое (а тогда вся известная ароматика была циклической) соединение было ароматическим, в его кольце должно быть делокализовано 4N + 2 p-электронов, где N — целое неотрицательное число. Если число электронов будет другим, они либо попадут на разрыхляющие орбитали, либо не смогут полностью заполнить все связывающие, и молекула окажется неустойчивой.Как это работает ↓
Правило Хюккеля предсказывало ароматичность соединения — это избавило химиков от необходимости изучать молекулярные орбитали или квантовую химию. Химики теперь могли просто подставить число в простую формулу — и все становилось понятно.
Схемы Хюккеля с молекулярными орбиталями линейных алкенов (слева) и нескольких ароматических производных (справа)
Shigeaki Kikuchi / Journal of Chemical Education, 1997
Хюккелевская теория позволила синтезировать и описать целый ворох новых ароматических веществ. Благодаря ей химики синтезировали, например, семичленный тропон, соли тропилий-катиона и пятичленного циклопентадиенил-аниона.
Причем правилу подчинялись не только углеводороды, но и циклические соединения с атомами азота и кислорода: пиррол, фуран, пиридин или индол. Некоторые из них уже были известны, но правило объяснило их явно ароматические устойчивость и реакционную способность. В результате быстро развились целые области химии: та же химия гетероциклов и, например, химия металлоорганических соединений, в которой лиганды зачастую — ароматические углеродные фрагменты, способные связываться с ионом металла с помощью своих делокализованных электронов.
К началу второй половины XX века, подкрепленная экспериментами и квантово-химическими расчетами, теория ароматичности стала стандартным инструментом для предсказания свойств соединений. Химик-органик заранее мог узнать, будет ли циклическое соединение определенного состава устойчивым или нет. И если будет — то по какому атому пойдет нужная ему реакция. С ароматичностью все было предельно ясно: ароматичность значит устойчивость к воздуху, другим окислителям и восстановителям, склонность к реакциям замещения, пониженная реакционная способность и делокализация электронов. И хотя общие критерии ароматичности ИЮПАК опубликовал только в 1987 году, и до этого ее признаки были интуитивно понятны всем: есть углеродный цикл с подходящим числом делокализованных электронов — значит ароматика.
Формальные критерии ароматичности
Сейчас международный союз теоретической и прикладной химии (ИЮПАК) приводит четыре основных критерия, позволяющих считать циклическую молекулу с делокализованной электронной плотностью ароматической:
- Энергетический: циклическая ароматическая молекула должна быть термодинамически устойчивей, чем аналогичная ей линейная молекула или гипотетическая структура с локализованной электронной плотностью.
- Структурный: в ароматическом фрагменте молекулы связи между атомами должны быть схожи по длине и порядку.
- Магнитный: при помещении во внешнее магнитное поле в ароматической молекуле должны возникать кольцевые токи.
- Электронный: все электроны ароматической системы молекулы должны полностью заполнять связывающие молекулярные орбитали, а все несвязывающие и разрыхляющие орбитали должны быть пустыми.
Но несмотря на наличие формальных критериев ИЮПАК признает, что из них есть много исключений. И ароматикой, согласно современному определению, можно считать и ациклические молекулы, и трехмерные кластерные структуры, и даже некоторые переходные состояния реакций. Только четвертый критерий ИЮПАК признает обязательным для всех признанных ароматическими структур.
И пока химики разбирались с органическими веществами, теория Хюккеля их не подводила, а соединения получались устойчивыми. Но потом ученые стали замечать ароматичность и в других соединениях.
Тоже аромат
Начиная с 70-х годов XX века, ароматическими стали называть соединения, в которых делокализованы не p-электроны углерода, как, например, в бензоле (такой тип ароматичности называется π-ароматичностью), но и электроны s-, d- и f-орбиталей самых разных атомов (σ-, δ- и φ-ароматичность соответственно).
Например, кластерные соединения бора предложил называть σ-ароматическими японский химик Дзюнъити Айхара в 1978 году, потому что они устойчивы, а механизм этой устойчивости держится все на той же делокализации электронов — но с s-, а не p-орбиталей. И хотя правило Хюккеля такие соединения не предсказывало, это выглядело уместным. Многие борные кластеры действительно устойчивы и действительно напоминают классическую ароматику: если их нагреть на воздухе или смешать с серной кислотой — ничего не произойдет. А при действии кислоты Льюиса пойдет реакция замещения — прямо как в бензоле.
Структуры ароматических клозо-боратных анионов
Miquel Solà et al. / Aromaticity and Antiaromaticity: Concepts and Applications, 2022
Еще один удачный пример использования концепции σ-ароматичности — трехатомные кластеры переходных металлов. Сразу несколько групп ученых за последние десять лет описали ряд устойчивых на воздухе комплексов палладия и золота, в которых роль остова молекулы играли связанные друг с другом три атома металла. И выглядят они вполне ароматически: делокализованная электронная плотность, одинаковые связи между атомами металла и характерная для ароматических соединений устойчивость. Хотя о склонности ароматических соединений к реакциям замещения в случае кластеров металлов говорить не приходится — в них просто нет связей металл-водород — теория ароматичности в этом случае позволила объединить несколько устойчивых соединений в один подкласс и описать их строение. Между собой эти вещества были очень похожи, но от классической ароматики они уже были довольно далеки.
Структура ароматического кластера золота
Alexander I. Boldyrev et al. / Chemistry — A European Journal, 2017
Но когда пополнять уже известные классы стабильных ароматических соединений стало нечем (кроме практически идентичных уже изученным веществ с другими неароматическими заместителями), а новых классов на горизонте не возникло, химики стали искать ароматичность там, где ее на первый взгляд быть не должно. Даже в неустойчивых и экзотических кластерах металлов. И придумывать для этих соединений новые правила подсчета электронов, схожие с тем, что предложил Хюккель.
Например, в 2001 году в журнале Science вышла статья об исследовании ароматического кластера Al42-. Авторы статьи показали, что электронная плотность в этом кластере действительно распределена между атомами алюминия, и это добавляет кластеру устойчивости. Но зафиксировать его можно только в газовой фазе, а положить в банку или провести с ним реакцию в растворе — нельзя. Нобелевский лауреат по химии Роалд Хоффман в 2015 году написал в своем эссе, что готов поспорить на бутылку хорошего вина, что вещества с этим кластером в своей структуре не удастся получить в твердом виде хотя бы в миллиграммовых количествах. За 8 лет никто отобрать у химика эту бутылку не смог.
Рассчитанные функции электронной плотности для молекулярных орбиталей алюминиевого кластера
Xi Li et al. / Science, 2001
В том же эссе Хоффман написал, что химики приписывают ароматичность неустойчивым и экзотичным молекулам, потому что относятся к ним, как родители к своим детям. Молекула, которую химик исследовал несколько лет, — для него самая лучшая и особенная. А ароматичность — просто хороший способ выделить ее из ряда остальных. При этом никакой научной ценности в таком подходе нет — потому что часть критериев ароматичности просто не соблюдается. Раньше для ароматичности нужна была устойчивость в химическом понимании — способность стоять на полке без разложения. А теперь стало достаточно расчета, показывающего, что в молекуле есть делокализация электронов. Но просто делокализацию можно найти в любой молекуле с любыми ковалентными связями — для этого никакая ароматичность не нужна.
Неароматические кольцевые токи
Видимо, с тем же родительским чувством британские химики в 2021 году публиковали статью о своем ароматическом ториевом кластере. Дело в том, что связи металл-металл очень нехарактерны для актинидов, к ряду которых принадлежит и сам торий. Связи торий-торий обычно либо вообще не образуются, либо они очень слабые. А авторам этой статьи удалось выделить кристаллическое вещество (правда, устойчивое только при температуре ниже −35 градусов Цельсия), в структуре которого, на первый взгляд, были связи торий-торий. Объяснить это явление авторы решили σ-ароматичностью.
Схема синтеза ториевого кластера
Josef T. Boronski et al. / Nature, 2021
Как и положено, они использовали сразу несколько критериев, чтобы эту ароматичность подтвердить. Во-первых, квантово-химические расчеты показали существенную делокализацию электронов внутри кластера. Во-вторых, величины ядерно-независимых химических сдвигов (NICS), с помощью которых можно оценить величину кольцевых токов вблизи ароматической системы в магнитном поле, тоже указывали на ароматичность. Казалось бы, придраться не к чему.Кольцевые токи и ядерно-независимый химический сдвиг ↓
Но в вышедшей через полгода статье химики из Чехии и Польши показали, что большие значения ядерно-независимых химических сдвигов при расчете возникают не из-за ароматичности, а из-за локальных токов вблизи атомов металла. А значит, магнитный критерий ароматичности не удовлетворен — и в остальных доводах авторов исходной статьи приходится сомневаться.
Локальные токи вокруг атомов тория (черные стрелки вокруг серых шариков). Красным выделена область дезэкранирования внешнего магнитного поля
Ben Joseph R. Cuyacot & Cina Foroutan-Nejad / Nature, 2022
Другой важный критерий ароматичности — это бóльшая стабильность циклической сопряженной молекулы по сравнению с нециклической. Этому критерию ториевый кластер тоже, как выяснилось, не удовлетворял. В своей статье польский химик Дариуш Щепаник показал, что гипотетический линейный ториевый кластер не менее стабилен, чем циклический. А относительная стабильность циклического объясняется не σ-ароматичностью ториевого цикла, а прочными многоцентровыми связями между атомами тория и хлора.
Авторы исходной статьи остались при своем мнении. По словам заведующего лабораторией вычислительной химии Университета Акрона Ивана Попова, сейчас они решили дополнительно подкрепить его новыми экспериментами. «C моей точки зрения, в случае триториевого соединения использование концепции ароматичности оправдано, потому что она помогает понять геометрию кластера и его устойчивость, — объясняет в беседе с N + 1 Попов, — Мне любопытно посмотреть, что произойдет со стабильностью этого кластера при окислении. Это, вероятно, приведет к уменьшению числа электронов на орбитали, которая, как утверждается в статье, отвечает за σ-ароматичность. Насколько мне известно, такие дополнительные исследования сейчас уже проводятся».
Похожая история произошла с якобы φ-ароматическим висмутовым кластером, о котором сообщили в 2022 году химики из Германии. В своей статье они утверждали, что делокализация электронной плотности на f-орбиталях висмутового кластера приводит к его φ-ароматичности — и это авторы статьи подтвердили расчетом кольцевых токов и ядерно-независимых химических сдвигов. Но в недавно вышедшем препринте Щепаник со своим коллегой из Испании Микелем Сола показали, что источник кольцевых токов в молекуле — не ароматичность, а электронные па́ры висмута. Кроме того, считают критики, делокализация электронной плотности на f-орбиталях приводит к уменьшению, а не увеличению стабильности кластера.
Структура якобы ароматичного висмутового кластера
Benjamin Peerless et al. / Nature Chemistry, 2022
«Использовать термин „делокализация электронов на орбиталях с симметрией f-типа“ гораздо более уместно, чем пытаться раскрутить делокализацию и продать ее как якобы φ-ароматичность в висмутовом кластере», — комментирует исследование немецких химиков Попов.
Авторы статей про торий и про висмут публично ответили своим критикам — и в обоих случаях остались при своем мнении. Если опустить подробности, их посыл такой: пусть критики не согласны с нашими утверждениями, но все-таки в некоторые представления об ароматичности наши молекулы вписываются — и этого достаточно. Поспорить с этим сложно, потому что непонятно, как это проверять и с чем сверяться: одних ИЮПАКовских критериев для этого не хватает — и поэтому, видимо, обе статьи с публикации пока не сняли.
Рассчитанные значения ядерно-независимого химического сдвига для гипотетического висмутового кластера Bi62- и синтезированного химиками кластера. Слева показаны значения, рассчитанные с учетом влияния электронных пар висмута, а справа — без их учета
Dariusz Szczepanik & Miquel Solà / ChemRxiv, 2023
Эти истории показывают, что ароматичность в наше время химики трактуют очень широко. И если молекула есть, то и ароматичность в ней найти можно, главное постараться.
Неароматические кластеры
Есть ли научная ценность в попытках приписать ароматичность очень разнообразным и сложным по строению молекулам — большой вопрос. Открытие Хюккеля послужило быстрому развитию сразу нескольких важных областей химии. А сейчас, когда ароматичность приписывают кластерным соединениям металлов, на выходе получаются только ничем не заканчивающиеся споры.
Прикладной ценности у этих споров практически никакой. Сам факт синтеза устойчивых кластеров висмута и тория — важное химическое открытие. Но хоть называй их ароматическими, хоть не называй — ничего от этого не поменяется. Все равно, когда у химика спросят, какие соединения ароматические, он приведет в пример бензол, пару гетероциклов, и, может быть, ферроцен. А устойчивые кластеры металлов для него будут просто устойчивыми кластерами металлов.
Справиться с этим можно по-разному. Во-первых, как предлагают критики ториевого кластера, можно вообще перестать использовать понятие ароматичности для кластеров металлов. Во-вторых, можно попробовать сформулировать более четкие критерии ароматичности, чем предлагает сейчас ИЮПАК. Тогда их выполнение будет единственным строгим поводом приписать новому соединению ароматический характер. Но из-за структурного разнообразия уже признанных ароматическими соединений, найти общие для всех ароматических веществ свойства пока не получается.
ИСТОЧНИК: N+1 https://nplus1.ru/material/2023/07/10/smells-like-aromatic